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Abstract

In this paper natural convection flows in a square cavity filled with a porous matrix has been investigated numerically when the bot-
tom wall is uniformly heated and vertical wall(s) are linearly heated whereas the top wall is well insulated. Darcy–Forchheimer model
without the inertia term is used to simulate the momentum transfer in the porous medium. Penalty finite element method with bi-qua-
dratic rectangular elements is used to solve the non-dimensional governing equations. Numerical results are presented for a range of
parameters (Rayleigh number Ra, 103

6 Ra 6 106, Darcy number Da, 10�5
6 Da 6 10�3, and Prandtl number Pr, 0.2 6 Pr 6 100) in

terms of stream functions and isotherm contours, and local and average Nusselt numbers.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Natural convection in fluid saturated porous media has
received considerable attention over the last several years
and non-Darcy effects on natural convection in porous
media have a great deal of attention in recent years. This
is due to a large number of technical applications, such
as, fluid flow in geothermal reservoirs, separation processes
in chemical industries, dispersion of chemical contaminants
through water saturated soil, solidification of casting,
migration of moisture in grain storage system, crude oil
production, etc. Comprehensive literature survey con-
cerned with this subject is given by Kaviany [1], Nield
and Bejan [2], Ingham and Pop [3,4], Vafai [5,6], Pop and
Ingham [7], Bejan and Kraus [8], Ingham et al. [9] and
Bejan et al. [10].
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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The buoyancy driven convection in a porous cavity
heated differentially in the horizontal side has been analyzed
by Walker and Homsy [11] by a number of different tech-
niques. The results obtained are fairly good agreement with
each other as well as experimental results. The Brnikman-
extended Darcy model has been considered by Tong and
Subramanian [12], and Lauriat and Prasad [13] to examine
the buoyancy effects on free convection in a vertical cavity.
This model has been introduced by Brinkman [14] in order
to account for the transition from Darcy flow to highly vis-
cous flow (without porous matrix), in the limit of extremely
high permeability. However, Brinkman model does not
account adequately for the transition from porous medium
flow to pure fluid flow as the permeability of the porous
medium increases. A model that bridges the entire gap
between the Darcy and Navier Stokes equations is the
Darcy–Forchheimer model which was developed by Vafai
and Tien [15]. It is known that the Darcy’s law is an empir-
ical formula relating the pressure gradient, the gravitational
force and the bulk viscous resistance in porous media. Thus
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Nomenclature

Da Darcy number
g acceleration due to gravity, m s�2

J Jacobian of residual equations
k thermal conductivity, W m�1 K�1

K permeability of the porous medium
L side of the square cavity, m
Nu local Nusselt number
p pressure, Pa
P dimensionless pressure
Pr Prandtl number
Ra Rayleigh number
T temperature, K
Th temperature of hot bottom wall, K
Tc temperature of cold vertical wall, K
u x component of velocity
U x component of dimensionless velocity
v y component of velocity

V y component of dimensionless velocity
X dimensionless distance along x coordinate
Y dimensionless distance along y coordinate

Greek symbols

a thermal diffusivity, m2 s�1

b volume expansion coefficient, K�1

c penalty parameter
h dimensionless temperature
m kinematic viscosity, m2 s�1

q density, kg m�3

w stream function

Subscripts

b bottom wall
s side wall
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the mathematical formulations based on Dracy’s law will
neglect the effects of a solid boundary or the inertia forces
on fluid flow and heat transfer through porous media. In
general, the inertia and boundary effects become significant
when the fluid velocity is high and the heat transfer is con-
sidered in the near wall region (see Chen and Lin [16]). In
addition, the Darcy–Forchheimer model describes the effect
of inertia as well as viscous forces in porous media and was
used by Poulikakos and Bejan [17,18], Beckermann et al.
[19], and Lauriat and Prasad [20] to examine the natural
convection in a vertical porous layer and in a vertical enclo-
sure filled with a porous medium. Further, natural convec-
tion in a square enclosure filled with a fluid saturated
porous medium using a thermal non-equilibrium model
has been investigated by Mohammad [21] for Brinkman-
extended Darcy flow and by Baytas and Pop [22] for Darcy
flow. Also, the effect of viscous dissipation has been consid-
ered for Darcy model by Saeid and Pop [23]. In contrast,
very few investigations have been made in the past to focus
on natural convection in porous medium due to uniform
heating from below as reported by Basak et al. [24], Horne
and O’sullivan [25], Caltagirone [26] and Straus [27].

The aim of the present investigation is to study a natural
convective flow in a square cavity filled with a fluid satu-
rated porous medium when the bottom wall is uniformly
heated, left vertical wall is linearly heated and the right
vertical wall is heated linearly or cooled while top wall is
well insulated. The Darcy–Forchheimer model without the
Forchheimer’s inertia term has been adopted. In case of
cooled right wall, the finite discontinuities in temperature
distribution appear at the edges of the bottom wall. In
our current study, we have used Galerkin finite element
method with penalty parameter to solve the non-linear
coupled partial differential equations governing flow and
temperature fields. The momentum transfer in the porous
medium is based on the Darcy–Forchheimer model.
Numerical results are obtained to display the circulations
and temperature distributions within the cavity and the
heat transfer rate at the heated wall in terms of local and
average Nusselt numbers.
2. Governing equations

Consider a fluid saturated porous medium enclosed in a
square cavity of side L as shown in Fig. 1. The physical
properties are assumed to be constant except the density
in the buoyancy force term which is satisfied by the Bous-
sinesq’s approximation. Further, it is assumed that the
temperature of the fluid phase is equal to the temperature
of the solid phase everywhere in the porous region, and
local thermal equilibrium (LTE) model is applicable in
the present investigation [2]. Also, a velocity square term
could be incorporated in the momentum equations to
model the inertia effect which is more important for non-
Darcy effect on the convective boundary layer flow over
the surface of a body embedded in a high porosity media.
However, we have neglected this term in the present study
because we are dealing with the natural convection flow in
a cavity filled with a porous medium. Under these assump-
tions and following Vafai and Tien [15] with the Forchhei-
mer’s inertia term neglected, the governing equations for
steady two-dimensional natural convection flow in the por-
ous cavity using conservation of mass, momentum and
energy can be written as (see Du and Bilgen [29]):
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with boundary conditions

uðx; 0Þ ¼ uðx; LÞ ¼ uð0; yÞ ¼ uðL; yÞ ¼ 0;

vðx; 0Þ ¼ vðx; LÞ ¼ vð0; yÞ ¼ vðL; yÞ ¼ 0;

T ðx; 0Þ ¼ T h;
oT
oy
ðx; LÞ ¼ 0; 0 < x < L;

T ð0; yÞ ¼ T h � ðT h � T cÞ
y
L
;

T ðL; yÞ ¼ T h � ðT h � T cÞ
y
L

or T c;

ð5Þ

where x and y are the distances measured along the hori-
zontal and vertical directions, respectively; u and v are
the velocity components in the x- and y-directions, respec-
tively; T denotes the temperature; m and a are kinematic vis-
cosity and thermal diffusivity, respectively; K is the medium
permeability; p is the pressure and q is the density; Th and
Tc are the temperatures at hot bottom wall and cold verti-
cal walls, respectively; L is the side of the square cavity.
Using the following change of variables:

X ¼ x
L
; Y ¼ y

L
; U ¼ uL

a
; V ¼ vL

a
; h ¼ T � T c

T h � T c

;

P ¼ pL2

qa2
; Pr ¼ m

a
; Da ¼ K

L2
; Ra ¼ gbðT h � T cÞL3Pr

m2
;

ð6Þ

the governing equations (1)–(4) reduce to non-dimensional
form:
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with the boundary conditions

UðX ;0Þ ¼ UðX ;1Þ ¼ Uð0;Y Þ ¼ Uð1;Y Þ ¼ 0;

V ðX ;0Þ ¼ V ðX ;1Þ ¼ V ð0;Y Þ ¼ V ð1;Y Þ ¼ 0;

hðX ;0Þ ¼ 1;
oh
oY
ðX ;1Þ ¼ 0;

hð0;Y Þ ¼ 1� Y ; hð1;Y Þ ¼ 1� Y or hð1;Y Þ ¼ 0 ð11Þ

Here X and Y are dimensionless coordinates varying along
horizontal and vertical directions, respectively; U and V are
dimensionless velocity components in the X- and Y-direc-
tions, respectively; h is the dimensionless temperature; P

is the dimensionless pressure; Ra, Pr and Da are Rayleigh,
Prandtl and Darcy numbers, respectively.

3. Numerical method and choice of parameters

The momentum and energy balance equations (8)–(10)
are solved using the Galerkin finite element method. The
continuity equation (7) will be used as a constraint due
to mass conservation and this constraint may be used to
obtain the pressure distribution [30,31]. In order to solve
Eqs. (8)–(10), we use the penalty finite element method
where the pressure P is eliminated by a penalty parameter
c and the incompressibility criteria given by Eq. (7) (see
Reddy [31]) which results in

P ¼ �c
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� �
: ð12Þ

The continuity equation (7) is automatically satisfied for
large values of c. Typical values of c that yield consistent
solutions are 107 [30,31].

Using Eq. (12), the momentum balance equations (8)
and (9) reduce to
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The system of Eqs. (10), (13) and (14) with boundary con-
ditions (Eq. (11)) is solved by using Galerkin finite element
method. Since the solution procedure is explained in Ref.
[24], the detailed description in not included in this paper.
The numerical solutions are obtained in terms of the veloc-
ity components (U,V) and stream function (w) is evaluated
using the relationship between the stream function (w) and
the velocity components [32], where the stream function (w)
is defined in the usual way as U ¼ ow

oY and V ¼ � ow
oX . It may

be noted that the positive sign of w anti-clockwise circula-
tion and the clockwise circulation is represented by the
negative sign of w. The no-slip condition is valid at all
boundaries as there is no cross flow, hence w = 0 is used
for the boundaries.

The heat transfer coefficient in terms of the local Nusselt
number (Nu) is defined by

Nu ¼ � oh
on
; ð15Þ

where n denotes the normal direction on a plane. The local
Nusselt numbers at bottom wall (Nub) and at the vertical
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Fig. 1. Schematic diagram of the physical system.
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walls (Nul, Nur) are evaluated for various wall boundary
conditions, using above definition. The average Nusselt
numbers at the bottom and side walls are computed as
follows:

Nub ¼
Z 1

0

Nub dX ; Nul ¼
Z 1

0

Nul dY ; and

Nur ¼
Z 1

0

Nur dY : ð16Þ

The computational domain consists of 20 � 20 bi-qua-
dratic elements which correspond to 41 � 41 grid points.
The bi-quadratic elements with lesser number of nodes
smoothly capture the non-linear variations of the field vari-
ables which are in contrast with finite difference/finite vol-
ume solutions available in the literature [12,20]. In order to
assess the accuracy of our numerical procedure, we have
tested our algorithm based on the grid size (41 � 41) for
a square enclosure with a side wall heated and the results
are in well agreement with the work of Lauriat and Prasad
[20]. Comparisons are not shown here for the brevity of the
manuscript.

Computations have been carried out for various values
of Ra = 103–106, Da = 10�5–10�3 and Pr = 0.2–100 with
uniform bottom wall heating, linearly heated left wall
and right wall is linearly heated or cooled where the top
wall is well insulated. The jump discontinuities in Dirichlet
type of wall boundary conditions at the corner points cor-
respond to computational singularities. In particular, the
singularity at the corner nodes of the bottom wall needs
special attention. The grid size dependent effect of the tem-
perature discontinuity at the corner points upon the local
Nusselt numbers tend to increase as the mesh spacing at
the corner is reduced. One of the ways for handling the
problem is assuming the average temperature of the two
walls at the corner and keeping the adjacent grid-nodes
at the respective wall temperatures. In the current investi-
gation, Gaussian quadrature based finite element method
provides the smooth solutions at the interior domain
including the corner regions as evaluation of residual
depends on interior gauss points and thus the effect of cor-
ner nodes are less pronounced in the final solution. Since
the detailed solution procedure is explained in a recent arti-
cle [24], the description of the numerical method is omitted
in the present manuscript. The present finite element
approach offers special advantage on evaluation of local
Nusselt number at the bottom and side walls as the element
basis functions are used to evaluate the heat flux.
4. Results and discussion

4.1. Effect of Darcy number

4.1.1. Case I: Linearly heated side walls
Figs. 2–4 illustrate the stream function and isotherm

contours of the numerical results for various Ra = 103–
106, Da = 10�5–10�3 and Pr = 0.7 when the bottom wall
is uniformly heated and side walls are linearly heated where
the top wall is well insulated. As expected due to linearly
heated vertical wall and the uniformly heated bottom wall
fluid rise up from middle portion of bottom wall and flow
down along the vertical walls forming two symmetric rolls
with clockwise and anti-clockwise rotations inside the cav-
ity. In general, the fluid circulation is strongly dependent
on Darcy number as can be seen in Figs. 2–4. Fig. 2 illus-
trates the stream function and temperature contours for
Da = 10�5 and Ra = 106, and the flow is seen to be very
weak as observed from stream function contours. There-
fore, the temperature distribution is similar to that with
stationary fluid and the heat transfer is due to purely con-
duction. During conduction dominant heat transfer, the
temperature h 6 0.3 occur symmetrically near the top cor-
ners of the side walls in the enclosure. The other tempera-
ture h P 0.4 are smooth curves which span the entire
enclosure and they are generally symmetric with respect
to the vertical symmetric line.

As Darcy number increases to 10�4, the strength of flow
is increased at Ra = 106. The stronger circulation causes
the temperature contours with h = 0.5 getting shifted
towards the side wall and break into symmetric contour
lines (see Fig. 3). Note that, at Da = 10�4, the conduction
dominant heat transfer mode would occur up to Ra = 9 �
104. During Da = 10�3, flow is a very strong function of Ra
and the conduction dominant heat transfer occurs up to
Ra = 2 � 104. During conduction dominant mode, the
temperature profile is similar to that in Fig. 2. The presence
of significant convection is also exhibited in other temper-
ature contours lines which start getting deformed and
pushed towards the side wall. The conduction dominant
heat transfer will be illustrated later via average Nusselt
number vs. Rayleigh number plot and the critical Rayleigh
number would demonstrate the significant effect of convec-
tive heat transfer.



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
STREAM FUNCTION, ψ

0.005

0.02

0.04

0.06

0.
08

–0.005

–0.02

–0.04

–0.06

–0.08

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
TEMPERATURE, θ

0.9

0.8

0.7

0.6

0.5

0.4
0.3

0.30.
2 0.2

Fig. 2. Contour plots for linearly heated vertical walls h(0,Y) = h(1,Y) = 1 � Y, with Pr = 0.7, Da = 10�5 and Da = 106. Clockwise and anti-clockwise
flows are shown via negative and positive signs of stream functions, respectively.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
STREAM FUNCTION, ψ

0.
1

0.5

1

1.5

–0.1

–0.5

–1

–1.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
TEMPERATURE, θ

0.9

0.8

0.7

0.
60.

5 0.5

0.
4 0.4

0.
3 0.3

0.
2 0.2

Fig. 3. Contour plots for linearly heated vertical walls h(0,Y) = h(1,Y) = 1 � Y, with Pr = 0.7, Da = 10�4 and Ra = 106. Clockwise and anti-clockwise
flows are shown via negative and positive signs of stream functions, respectively.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
STREAM FUNCTION, ψ

0.4
20.4

–0.4

–0.4

0.4

0.4
2

–0.4

24

6
6

4

2
0.4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
TEMPERATURE, θ

0.90.8

0.7

0.6

0.5 0.
5

0.40.4

0.
3 0.3

Fig. 4. Contour plots for linearly heated vertical walls h(0,Y) = h(1,Y) = 1 � Y with Pr = 0.7, Da = 10�3 and Ra = 106. Clockwise and anti-clockwise
flows are shown via negative and positive signs of stream functions, respectively.

1896 M. Sathiyamoorthy et al. / International Journal of Heat and Mass Transfer 50 (2007) 1892–1901



M. Sathiyamoorthy et al. / International Journal of Heat and Mass Transfer 50 (2007) 1892–1901 1897
As Rayleigh number increases to 106 with Da = 10�3,
many secondary circulations appear at the bottom half of
the cavity. The secondary circulations pushed the primary
circulations towards the upper part of the cavity due to
enhanced convection from the hot lower half of the cavity
and hot fluid moves towards the center of cavity as seen
from Fig. 4. The isotherm lines with greater values
(h P 0.5) cover almost 80% of the cavity. It is interesting
to observe that the pairs of symmetric circulations with
‘hot’ and ‘cold’ fluid regimes appear distinctly inside the
cavity constituting the present natural convection flow.
Comparative studies in Figs. 4–6 for a wide range of Pra-
ndtl number, Pr, from 0.2 to 1000 show many interesting
features of stream function and isotherm contours in
the cavity. The general trend is that higher Pr reduces the
strength of secondary circulations while increases the
strength of primary circulations (see Figs. 4–6). The phys-
ical reason is that higher Prandtl number fluid implies more
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viscous fluid which makes the secondary circulations
weaker.

4.1.2. Case II: Linearly heated left wall with cooled right

wall

Stream function and isotherm contours are displayed in
Figs. 7–9 for Da = 10�4–10�3, Ra = 106 and Pr = 0.2–1000
with uniformly heated bottom wall, cooled right wall and
the left wall is linearly heated. As expected due to linearly
heated left wall, fluids rise up along the side of the left wall
and flow down along the cooled right wall forming second-
ary circulations due to convection at the top corner of the
left wall. Further, the hot fluid zone is created at the
bottom corner of the left wall within the cavity. For
Da = 10�4 and Pr = 0.7, the temperature contours with
h = 0.5 pushed towards the top corner of the left wall
(see Fig. 7). At Da = 10�3, the flow is stronger and the
strength of the secondary circulation is increased and
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pushed the primary circulation towards the right corner of
the bottom wall. The isotherm contours with grater values
h P 0.5 cover around 75% of the cavity. In this case for
Ra = 106 and Da = 10�3, comparative studies in Figs. 7–
9 for the increase of Pr from 0.2 to 1000 do not show much
significant change in the values of stream function and iso-
therm contours in the cavity except that the strength of the
primary circulation increases slightly as shown in Fig. 9 for
Pr = 1000. The significant effect of convective heat transfer
will be illustrated via average Nusselt number vs. Rayleigh
number plot in the next section.
4.2. Heat transfer rates: local and average Nusselt numbers

4.2.1. Case I: Linearly heated side walls

Fig. 10a and b displays the effect of Ra and Da on
the local Nusselt numbers at the bottom and side walls
(Nub,Nus) for Pr = 0.7 and 10. At the edges of the bottom
wall, the heat transfer rate or Nub is 1 due to linearly heated
side walls. For Da = 10�4, the heat transfer rate is sinusoi-
dal type with its minimum value at the center of the bottom
wall due to higher values of stream function (i.e., flow
rate)with two symmetric circulations about the vertical
symmetric line at the center of the bottom wall. In contrast,
for Da = 10�3 at Pr = 0.7 and Pr = 10, the heat transfer
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Fig. 10. Variation of local Nusselt number with distance at (a) bottom
wall and (b) side wall for linearly heated side walls. The results are shown
for Ra = 106.
rate is maximum at center of the bottom wall due to the
presence of strong secondary circulation leading to hight
temperature gradient at the center of bottom wall. It is
observed in Fig. 10 that the local Nusselt number Nus is
zero at the bottom-edge of the side wall due to uniformly
heated bottom wall and it is maximum at the top-edges
of side walls due to insulated top wall. For Da = 10�5,
Pr = 0.7, due to weak circulation, heat transfer rate is
almost zero up to Y = 0.7 and Nus = 3 at Y = 1 whereas
at Da�4, the heat transfer rate Nus = 5 due to stronger cir-
culations. For Da = 10�3, due to the presence of a pair of
symmetric secondary circulated cells with clockwise and
anti-clockwise rotations, the heat transfer rate is oscillatory
in nature and the increasing trend of heat transfer rate is
observed in the upper half of the side walls with Nus = 9
and Nus = 9.8 at Y = 1 corresponding to Pr = 0.7 and
10, respectively.

The overall effects upon the heat transfer rates are dis-
played for linearly heated vertical walls in Fig. 12a and b,
where the distributions of the average Nusselt number of
bottom wall and vertical walls, respectively are plotted
vs. the Rayleigh number. It is observed that the average
Nusselt number is almost constant up to Ra = 5 � 105

and Ra = 7 � 10�4 for Da = 10�4 and Da = 10�3, respec-
tively due to dominant heat conduction mode and later
smoothly increases with the increase of Rayleigh number
further. It is interesting to note that, the smoothly increas-
ing trend breaks at Ra = 5 � 105 for Pr = 0.7 and Da =
10�3 for both bottom and side walls due to the presence
of strong multiple secondary cells. In contrast, for Pr =
10, the smoothly increasing trend of average Nusselt
number with Ra is still observed due to the weak secondary
cells for higher Prandtl numbers.

4.2.2. Case II: Linearly heated left wall with cooled right

wall

Fig. 11a and b displays the effects of Da and Pr on local
Nusselt numbers at the bottom and side walls (Nub,Nul,
Nur) for linearly heated left wall and cooled right wall.
The heat transfer rate Nub, is 1 at the left-edge of the
bottom wall due to the linearly heated left wall and it is
maximum at the right-edge of the bottom wall due to the
cooled right wall (see Fig. 11a). As Da increases from
10�5 to 10�3, the heat transfer rate increases everywhere
at the bottom wall but for the increase of Pr from 0.7 to
10, there is a very little increase in heat transfer rate at
the bottom wall. In Fig. 11b, the heat transfer rate (Nul)
at the bottom-edge of the left wall is zero due to the
uniformly heated bottom wall and linearly heated left wall
and its magnitude increases from the bottom-edge to the
top-edge of the left wall. At Da = 10�3, local Nusselt num-
ber (Nul) exhibits oscillatory behavior due to the presence
of secondary circulations near the top-edge of the left wall.
The inset plot shows the local Nusselt number (Nur) distri-
bution for the right wall. For all values of Da and Pr, it is
observed that Nur is maximum at the bottom-edge and
decreases towards the top-edge.
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right wall. The results are shown for Ra = 106.
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inset of d shows plot of average Nusselt number vs. Rayleigh number for
right wall.

1900 M. Sathiyamoorthy et al. / International Journal of Heat and Mass Transfer 50 (2007) 1892–1901
The overall effects of Ra, Pr and Da on the average Nus-
selt numbers at the bottom, left and right walls are dis-
played in Fig. 12c and d when the left vertical wall is
linearly heated and right vertical wall is cooled while the
bottom wall is uniformly heated. It is observed that the
average Nusselt number of the bottom wall smoothly
increases with the increase of Rayleigh number for
Da = 10�3 and Da = 10�4 as seen in Fig. 12c. In contrast,
variation of the average Nusselt number for the left wall
does not show the unique trend for Da = 10�4 and 10�3

due to secondary circulations appearing near the left wall.
The inset of Fig. 12d shows the variation of average Nus-
selt number of right wall and the average Nusselt number
is found to follow increase smoothly with Rayleigh number
due to absence of multiple cells near the right wall. It is also
interesting to note that the average Nusselt number for
bottom and side walls seem to be negligibly influenced by
Prandtl number.
5. Conclusions

The influence of linearly heated vertical wall(s) and uni-
formly heated bottom wall on flow and heat transfer char-
acteristics due to natural convection within a square cavity
filled with porous medium has been studied in the present
investigation. The penalty finite element method helps to
obtain smooth solutions in terms of stream function and
isotherm contours for a range of Pr, Ra and Da. In case
of linearly heated side walls, the presence of symmetric
strong secondary circulations enhances the local mixing
process in the lower half of the cavity for low Prandtl num-
ber fluid. Secondary circulations become weaker for higher
Prandtl number fluid. The local Nusselt number exhibits
oscillatory nature due to the presence of multiple second-
ary circulations. The average Nusselt numbers are almost
constant in entire range of Ra up to 106 for Da = 10�5

due to the conduction dominant mode of heat transfer
but the average Nusselt number in general increases with
the increase of Da and Ra. The effect of strong secondary
circulation is also illustrated by the break in smoothness
in average Nusselt number vs. Rayleigh number curve at
Ra = 5 � 105, Pr = 0.7 and Da = 10�3. In case of linearly
heated left wall, the oscillation in local Nusselt number
occurs at the bottom wall due to secondary circulations
at Da = 10�3. Therefore, the average Nusselt number for
the left wall also shows break in smoothness of the curve
at high Ra and Da.
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(1992) 149–155.

[30] T. Basak, K.G. Ayappa, Influence of internal convection during
microwave thawing of cylinders, AIChE J. 47 (2001) 835–850.

[31] J.N. Reddy, An Introduction to the Finite Element Method,
McGraw-Hill, New York, 1993.

[32] G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge
University Press, 1993.


	Steady natural convection flow in a square cavity filled with a porous medium for linearly heated side wall(s)
	Introduction
	Governing equations
	Numerical method and choice of parameters
	Results and discussion
	Effect of Darcy number
	Case I: Linearly heated side walls
	Case II: Linearly heated left wall with cooled right wall

	Heat transfer rates: local and average Nusselt numbers
	Case I: Linearly heated side walls
	Case II: Linearly heated left wall with cooled right wall


	Conclusions
	References


